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ABSTRACT

The greatest advantage gained from hyperspectral imagery is that narrow spectral features can be used to give more
information about materials than was previously possible with broad-band muitispectral imagery. For many applications,
the new larger data volumes from such hyperspectral sensors, however, present a challenge for traditional processing

techniques. For example, the actual identification of each ground surface pixel by its corresponding reflecting spectral
signature is still one of the most difficult challenges in the exploitation of thlsadvanced technology, bec_ the
immense volume of data collected. Therefore, conventional classification methods require a preprocessing step of
dimension reduction to conquer the so-called "curse of dimensionality. ''l Spectral data reduction using wavelet
decomposition could be useful, as it does not only reduce the data volume, but also preserves the distinctions between
spectral signatures. This characteristic is related to the intrinsic property of wavelet transforms that preserves high- and
low-frequency features during the signa_ decomposition, therefore preserving peaks and valleys found in typical spectra.
When comparing to the most widespread dimension reduction technique, the Principal Component Analysis (PCA), and

-\ looking at the same level of compression rate, we show that Wavelet Reduction yields better classification accuracy, for
; hyperspectral data processed with a conventional supervised classification such as a maximum likelihood method.
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1. INTRODUCTION

Hyperspectral imagery provides richer information than traditional multispectral imagery. Once the diagnostic

spectral signatures are extracted from the hyperspectral data, the difficulty of actually identifying the material reflecting

these spectral signatures prevents the full potential of hyperspectral technology from being realized. Furthermore, it is

clear that more effective data processing techniques are needed to deal with hyperspectrai cubes. Because it is necessary

to have a minimum ratio of training pixels to the number of spectral bands in order to ensure a reliable estimate of class

statistics [1], dimension reduction has become a significant part of the hyperspectral image interpretation. Dimension

reduction is the transformation that brings data from a high order dimension to a low order dimension, thus conquering

the curse of dimensionality [2]. Dimension reduction is becoming an even more important issue due to the fact that the

first few space-borne hyperspectral sensors are currently in orbit, producing great amounts of data.

In remote sensing, one of the most widely used dimension reduction techniques is the Principal Component
Analysis. Principal Component Analysis is a popular technique for eliminating redundancy in the data. PCA is based on
decorrelation and obtains redundancy reduction by discarding low variance components, but this rotational transform is

i The curse of dimensionality refers to the fact that the sample size needed to estimate a function of several variables to a given degree

of accuracy grows exponentially with the number of variables.



time-consuming because of its global nature. Moreover, since it is a global transformation, it does not preserve local
spectral signatures and therefore might n'ot preserve all information useful to obtain a good classification. For these

reasons, we are proposing a new dimension reduction method based on wavelet decomposition.

The principle of our method is to apply a discrete wavelet transform to hyperspectral data in the spectral domain and
at each pixel. This not only reduces the data volume, but it also preserves the distinctions between spectral signatures.
This characteristic is related to the intrinsic property of wavelet transforms of preserving high- and low-frequency

features during the signal decomposition, therefore preserving peaks and valleys found in typical spectra.

The paper is organized as follows: Section 2 provides an overview of the wavelet decomposition that we will be
using for dimension reduction. Section 3 discusses the computational complexity of our wavelet-based dimension

reduction method compared to Principal Component Analysis. Section 4 presents the experimental results, including the

hyperspectral test data and classification accuracies for dlTferent conventional classification methods.

2. MULTI-RESOLUTION WAVELET DECOMPOSTION

Wavelet transforms are the basis of many powerful tools that are now being used in remote sensing applications, e.g.

compression, registration, fusion and classification. Using Mallat algorithm [3], discrete wavelet transforms (DWTs) can
be computed very fast. In this paper, we will only consider discrete wavelets, particularly those expressed as orthonormal

.... b_e__ The discrete wavelet transform is a fast, linear operation that operates on a data vector whose length is an integer
.... _W6r of two, transforming it into a numerically different vector of the sam_ength [3][4]. The output cepreSents wavelet

coefficients at different positions and scales.
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Figure 1. The fast DWT

Figure 1 shows the principle of Mallat decomposition: an orthonormal basis of wavelets is defined by a scaling

function and its corresponding conjugate filter L. The two associated filters, the low-pass filter (L) and its corresponding
high-pass filter (H) are applied to the signal, followed by dyadic decimation removing every other element of the signal

and thereby halving its overall length. It operates recursively by then reapplying the same procedure to the result of the L
filter, as shown in Figure 1. In the original vector x of length N = 2"from Figure i, thejth iteration produces the

smoothed coefficients at scale j; cj=LJx for j=l ..... .L This application of the low-pass filter (L) causes co to be an

increasingly smoother version of the original vector.

In this paper, such a I-D discrete wavelet transform will be used for reducing hyperspectral data in the spectral

domain at each pixel individually. This transform will decompose the hyperspectral signature of each pixel into a set of
composite bands which are linear, weighted combinations of the original spectral bands.



Oneof the filters from the families of filters defined by Daubechies [6] has been applied to this work. Daubechies's
families are compactly supported in the time-domain and have good frequency domain decay. The time-domain compact

support enables the employment of fast recursive filter-bank algorithms using filters with a finite number of coefficients.
Another advantage is that it is possible to control the smoothness of the analyzing wavelets. One of the simplest and
most localized filter, often called DAUB4, has been used [5][6]. This filter has only four coefficients. DAUB4 has the

peculiar property that its derivative exists almost everywhere. The result at each point represents a moving average of

four points. Figure 2 shows an example of the actual signature of one class (Corn-notiii) for 192 bands of the Indian
Pines'92 AVIRIS dataset, and different levels of wavelet decomposition of this spectral signature. When the number of

bands is reduced, the structure of the spectral signature becomes smoother than the structure of the original signature,
and an important issue is to determine how many levels of decomposition can be applied while still yielding good

classification accuracy.
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Figure 2. An example of the Com-notill spectral signature and different levels of wavelet decomposition

3. REDUCTION EFFICIENCY ANALYSIS

Once the I-D wavelet decomposition is applied to each pixel signature, the next step is to select the fewest wavelet
coefficients required to give the highest accuracy for different conventional classification methods. These wavelet

coefficients yield a reduced-dimensional data set that can be used as input for supervised classifications.

From a complexity point of a view, for a filter of length NL, a wavelet decomposition requires in the order of NL

operations per invocation. After the first invocation of the low-pass filter (L) we obtain half the number of pixels, and

then apply the low-pass filter again. Thus, each level processes half the number of pixels than the previous level. Since
NL is fixed for any particular wavelet filter, the wavelet-based reduction method yields the order of O(N) (N is the



numberof bands)computationsperpixel,whichis extremelyfavorable[6][7]. Therefore, the whole algorithm

complexity is in the order of O(MN), where M is the number of pixels in the spatial domain.

On the other hand, the PCA computational complexity of an M pixels image of N spectral bands can be computed as
follows:

(1) Find the mean vector: O(MN);
(2) Assemble the covariance matrix: O(MN2);

(3) Perform eigenanalysis, i.e. generate the transformation matrix used to compute the eigenvectors with a Jacobi
method: O(Na).

(4) Perform pixei-by-pixel linear transformation: O(RMN).
Therefore, the total estimated time complexity of a PCA is O(MN2+Na), where M is the number of pixels of the image

data, N is the number of bands, and R is the number of formed components (R_<.N) [8][9].

An example of computational efficiency is shown when reducing the Indian Pines'92 AVIRIS data (192 Bands,
145x145 pixels, -SMBytes) to the third level of wavelet decomposition compared to 24 Principal Components. The

wavelet-based reduction takes only 1.907 seconds, while PCA is much more time-consuming with 20.309 seconds

(including IO operations). These timing results are obtained on a Pentium III 450 MHz Linux-based Workstation. The
wavelet-based reduction has therefore decreased the computational workload and is faster than PCA by about 10 times.
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4. EXPERIMENTAL RESULTS

4.1. Experiment Setup and Hyperspectral Test Data .........

We have experimentally validated our wavelet-based dimension reduction by using remotely sensed image test

suites from 2 hyperspectral scenes, and then using ENrVI (the Environment for Visualizing Images) as a tool for
classification assessment. EN-VI is a state-of-the-art image processing system designed to provide a comprehensive

analysis of satellite and aircraft remote sensing data, especially hyperspectral data [10]. It includes functions useful for
multispectral and hyperspectral classification analysis that enable to select samples (points or regions) for training and

testing pixels. Then, a confusion matrix is computed in order to assess the classification accuracy. We used the same
level of compression as the basis comparison between the two methods. For example, the first level of decomposition

(decimated by 2 from 192 bands of original data) is compared to 96 Principal Components (PCs), the second level to 48
PCs, and so on.

Supervised classification algorithms are trained on labeled data, so they are able to identify the class to which a pixel
or a region belongs and thus provide a high-level characterization of the data [11]. Three conventional supervised
classification methods are selected to test both PCA and our Wavelet Reduction technique.

Maximum Likelihood (ML): This classification method assumes that the statistics for each class in each band are

normally distributed, and calculates the probability that a given pixel belongs to a specific class [1][10]. A maximum
likelihood classification involving N spectral bands and C classes requires CPNfN+I) multiplications where P is the

numbers ofpixels in the image of interest [1].
Minimum Distance: The minimum distance classification uses the mean vectors of each training sample region and

calculates the Euclidean distance from each unknown pixel to the mean vector for each class [i][I0].

Parallelepiped: The parallelepiped classification uses a simple decision rule to classify multispectral data. The decision
boundaries form an n-dimensional parallelepiped in the image data space. The dimensions of the parallelepiped are

defined based upon a standard deviation threshold from the mean of each selected class [1 ][10].

Two hyperspectral data sets used in the experiment are as follows:

1) Indian Pines'92: The first dataset is a subset scene of the Airborne Visible Infrared Imaging Spectrometer

(AVIRIS) data, Indian Pines'92. This AVIRIS spectrometer has a ground pixel size of 17m x 17m, and a

spectral resolution of 224 channels, covering the range from 400 nm to 2500 nm, centered at 10 nm intervals.
We focus on the farmland scene taken June 12, 1992 in the northern part of Indiana, which consists of 145x145

pixels by 192 bands of radiance data as shown in Figure 3a. For this scene, the ground truth covers 49% of the
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full 145x145 scene and is divided among 16 classes. In this work, we selected 9 classes from the 16 classes to

test our techniques. The 9 classes are Corn-notill, Corn-min, Grass/Pasture, Grass/Trees, Hay-windowed,
Soybeans-min, Soybean-clean, Woods, and Soybeans-notill ranging in size from 489 pixels to 2468 pixeis. A

random training sample of 20% of the pixels was chosen from the known ground truth from each class. The
trained classifiers were applied to the remaining 80% of the known ground pixels in the scene [ 12] [13].
Salinas'9$: This AVIRIS dataset was acquired on October 9, 1998, South of the city of Greenfield in the

Salinas Valley in California. It includes vegetables, bare soils, and vineyard fields as shown in Figure 3b, and
consists of 217x512 pixels by 192 bands of radiance data. We selected 9 classes as follows: grapes-vineyard,

broccoli-weedl, fallow_smooth, soil-vineyard_develop, fallow, stubble, celery, brocoli weed2, and
com_scenesced. The training samples were chosen as 5 percent of the pixels from the known ground truth over

the entire scene. The trained classifiers were applied to the remaining 95 percent of the scene.

Since training samples were selected randomly, the procedure of selecting samples was repeated three times for both
scenes [13].
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Figure 3. Test AVIRIS Data: a.) Indian Pines'92; b.) Salinas'98

4.2. Experimental Results

The results show that our new dimension reduction method, the wavelet-based technique, provides a greater

computational efficiency as well as a better overall classification accuracy than the widely used PCA method. The
overall classification accuracies obtained from both dimension reduction methods are listed in Tables 1 and 3. For the

Indian Pines'92 dataset and the ML classification, it is shown that the Wavelet Reduction gives 82.4 percent overall

accuracy for the third level of decomposition, while PCA only gives 72.2 percent for 24 PCs for the ML classification.
The same trend is seen for the Salinas'98 scene, in which wavelet gives 98.6 percent, while PCA gives 98.3 percent.

Tables 2 and 4 show the complete results with confusion matrices of the classified wavelet coefficients at the third level

of decomposition, equivalent to 24 PCs, for the testing areas of both data sets with the ML classification [14].

The two other classification methods, Minimum Distance and Parallelepiped, are sometimes chosen over the

Maximum Likelihood classification because of their speed, but they are known to be much less accurate than the ML
classification. Therefore, as expected, when comparing PCA to Wavelet Reduction, it can be seen that both minimum

distance and parallelepiped classifiers provide significantly lower accuracy (below 50%) than maximum likelihood after

dimensionality reduction. It should also be noted that, for the ML classifications of Tables 1 and 3, the classification

accuracy at the first level of decomposition (or 96 PCs) is significantly lower because of Hughes phenomenon,
demonstrating a loss of classifier performance with higher dimensionality.



Classification Method

Maximum Likelihood

Minimum Distance

Reduction Method

PCA

Wavelet

['CA

Classification Accuracy

Wavelet

No. of Component/Level of Decomposition

48/2e/s I =4/3.,

72.6214 73.049675.1372 78.429

42.3659 42.6602 42.968
41.1214 41.9912 42.2722

36.9865 37.2541 36.8259

32.5037 32.7579 33.7883

7O. 186

81.5335

96/1

33.4404

15.3486

15.3486

43.0483 43.142

Wave_t 42.3792 42.3926

PCA 35.8624 31.1521
Parallelep_ed 33.0925

Table 1. Classifications results after PCA vs, Wavelet Reduction using different levels of decomposition

(indian Pines'92)
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Table 2. Confusion Matrix using the third level of wavelet decomposition and the ML classification (Indian Pines'92)

Classification Method

Maximum Likelihood

Reduction Method

PCA

Wavelet

Classification Accuracy
No. of Component/Level of Decomposition

615

97.2278

97.8968

12/4

97.9587

98.5979

24/3

98.3321

93.821

48/2

98.2313

9611

40.3501

98.5681 40.3501

93.821 93.8187
i.

PCA 93.7844 93.8096
Minimum Distance

Wavelet 93.5736 93.6927 93.8086 93.821 93.821

.... P'CA 81.7678 82.2054 80.2053 74.638 64.8277

76.5488 76.4915Wavelet 74.8213Parallelepiped 76.2326

Table 3. Classifications results at_erP-C_ vs. Wavelet ReduCtion using different [evels 0fdecomposition
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Table 4. Confusion Matrix using the third level of wavelet decomposition and the ML classification (Salinas'98'

Since the Principal Components transformation is based on a global transformation of the hyperspectral data, while
Wavelet Reduction, on the other hand, is based on a pixei by pixel wavelet decomposition, this new wavelet-based

method is not explicitly sensitive to the class structure in the scene. Moreover, while wavelets preserve the peaks and
valleys of spectral signatures, PCA, however, provides separability of the classes, and can still be useful when classes are

well distributed in the direction of the first few principal axes [l]. Figure 4 (scatter plot of PC1 and PC2 for both scenes)

shows that the spectral class structure of the Salinas scene is better separated along the two first principal axes than is the
Indian Pines scene [15]. This could explain why the classification accuracy obtained after PCA reduction is better for the
Salinas scene than for the Indian Pines scene. It could also explain why the ML classification results obtained with the



WaveletReductionapproacharesignificantlybetterthanPCAwhenappliedtotheIndianPinesscene.In suchacase,
thewaveletdecompositiontechniqueseemstobeabetterapproach.

Table5showsinformationcontents(cumulativepercentageoftotaldatavariation)forboththeIndianPines'92and
theSalinas'9$datasets.It isclearthat24PCsof theSalinas'98scene,containingatotaldatavariationof 99.99%are
sufficienttoproduceagoodclassificationaccuracy.Ontheotherhand,24PC'sof theIndianPines'92datasetcontain
only96.60%of thetotaldatavariation,andin thiscase,theWaveletReductionmethodoutperformsthePCA.Asa
summary,thetwofactorsthatexplaintheresultsare:

(1)thenatureoftheclassifiers,mostofwhicharepixel-basedtechniques[16],mightexplainwhywavelets,which
arepixel-basedtransformations, work better than PCA.

(2) the remaining information content, not included in the first PCs (such as for the Indian Pines'92 dataset),

contains information that is hidden by noise but that differentiates the classes. This information, not contained in the first

PCs, is still present in the wavelet reduced data.
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Figure 4. The scatter plot of PCl vs. PC2 for both data sets

No. of Components

Information Contents (%)

lndianPines'92 Salinas'98

6 94.89 99.92

12 95.61 99.97

24 96.6 99.99

48 97.94 99.99

96 99.37 -lO0

Figure 5. The cumulative percentage of total data variation at different number of Principal Components

5. CONCLUSIONS

In this paper, we have presented a fast and efficient dimension reduction technique for hyperspectral data based on
wavelet decomposition. Both analytical assessment of time complexity and experimental results of classification

accuracy have proven that the 1-D wavelet-based dimension reduction technique is a useful method for reducing



dimensionalityofhyperspectral data. On our two datasets, we showed that the Wavelet Reduction method yields similar

or better classification accuracy than the PCA. This can be explained by the fact that wavelet reduced data represent a
spectral distribution similar to the original distribution, but in a compressed form. The Wavelet Reduction method also

fits very well in the ML classification process for which it yields results superior to PCA. Furthermore, at a
decomposition level similar in compression rate to the number of PCAs, Wavelet Reduction is more efficient from a

computational point of view.

The best results were obtained by utilizing the third level of wavelet decomposition, and as mentioned earlier,

although the first and second level decomposition better represent the original spectral distribution, larger data
dimensions cause a a loss in classifier performance.

Future research will involve considering a trade-off method between Wavelet Reduction and PCA, and developing a

parallel hybrid dimension reduction algorithm.
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